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Abstract-In this paper a new coherence based method to 
extract the appropriate EEG features for a five mental tasks 
classification problem is proposed. The new introduced method 
has the advantage of using an adaptive new technique that 
models the EEG signal using the frequency information obtained 
by employing the coherence function to each EEG recording 
channel. The adaptive attribute of the technique is due to both, to 
the amplitude and, respective, to the phase adaptive processes 
used to model the EEG signal. Another specificity of the new 
modeling technique is given by the fact of exploiting the 
nonlinear dynamics of the brain system; this is reflected in the 
particular spectral mixing of the fundamental spectral 
components obtained first, by using the coherence function. 
Finally, to conclude the obtained results in comparison with the 
results reported in the literature, by using this new approach the 
classification rate was noticeably improved.    

 
I. INTRODUCTION 

An important and challenging biomedical signal processing 
problem in the brain-computer interface (BCI) field of 
research is the mental task classification by recognizing the 
electroencephalographic (EEG) patterns. The most frequently 
used means for this are: the slow cortical potentials [1], [2], 
the P300 evoked potentials [1], [2], [3], [4], the EEG signal 
acquired at the senzori-motor cortex level [1], [5], [6], the 
visual evoked potentials [2] and by means of cortical neurons 
[2]. All these represent particular useful information that was 
further used, in different researches, as input data for the 
classifying process. 

Now, it is largely recognized that the decisions made as the 
BCI output are mainly affected by the accuracy of 
classification. On the other hand, this last one essentially 
depends on the quality of the EEG signal (including here the 
appropriate number and locations of the EEG channels [7]) 
and the used processing algorithms (corresponding to the 
preprocessing, feature extraction [8], [9] and feature 
classification stages [10], [11]). Knowing the aphorism 
“garbage in, garbage out”, a main attention was given to find, 
first, which is the best useful information for the particular 
classification challenge and, second, to find those methods 
that are suitable for extracting this information from the raw 
EEG signals. Until now a number of specific features and 
methods were proposed. The most frequently used features in 
the BCI systems are:  AR coefficients [12], [13], AR models 
with exogenous inputs [13], power spectral parameters [14], 
statistic phase synchronization [14], [15], spatial filtering, 
mean value of the phase coherence [14], discharge frequency 

of a neuronal group [16], P300 wave [1], [17] etc.  
Besides these researches there are also papers that focused 

only on finding those approaches that allow for an online 
training of the classifiers [18] while others concentrated on 
choosing the appropriate classifier [19] or the optimal mental 
tasks for classification in BCIs. Anyway, the shared goal of all 
of the papers mentioned above is the improvement of BCI 
systems. 

In the study presented below we introduce a new method for 
EEG feature extraction. The analysis was done using the 
Purdue dataset that is one of the two known and well 
established datasets in the BCI field, the other being the Graz 
dataset. Both datasets are accessible from internet [20]. 

The EEG signals, recorded from six different cortical 
locations and corresponding to four subjects and to five 
different tasks, were modeled by using a derived version of the 
Adaptive Nonlinear Markov Process Amplitude (ANMPA) 
method presented in [16]. This model will be named in the rest 
of the paper Adaptive Amplitude and Phase Process Model 
(AAPPM). Also, the spontaneous oscillations (a priory 
specified) used in this model were determined by making use 
of the coherence function applied to each individual recording 
channel, for each mental task and for each subject. The 
parameters of the AAPP model were then used as input data to 
a multilayer perceptron whose output finally provided the 
correct classification rate for all tasks and for each particular 
subject. In this way we addressed to those BCI systems 
dedicated to a single person and to a limited number of 
different mental tasks. Usually, the BCI applications focus on 
one subject and one or more pairs of mental tasks [21], [22], 
and rarely on three [23], four or even five tasks [24] 
simultaneously. In our study we will present the results 
obtained for only one of the four subjects (namely, the subject 
that better performed the mental tasks) and for all the five 
cognitive tasks. 

II. MATERIALS AND METHODS 

A. Data Acquisition 
EEG data were recorded from 6 electrodes placed at 

locations according to the International 10-20 system, Fig. 1, 
each pair of them being fixed on the scalp, on the central (C3, 
C4), the parietal (P3, P4) and the occipital (O1, O2) positions 
as shown in Fig. 1. All channels were referred to the right 
mastoid A2 and were digitally sampled at 250 Hz. The total 
time of each recording was 10 s. 

Data from four subjects, performing five mental tasks that 



involved different cognitive abilities, were analyzed. The 
tasks, done without vocalizing and with the eyes closed, are as 
follows: the baseline task (the subject relaxed as much as 
possible); the letter task (the subject mentally composed a 
letter to a friend); the counting task (the subject watched 
sequentially numbers written on an imaginary blackboard); the 
math task (the subject performed a nontrivial multiplication) 
and the rotation task (the subject studied for 30 seconds a three 
dimensional object and, with the object being removed, was 
asked to imaginary rotate it about an axis). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B. Coherence Function 
As we have already mentioned above, we used the 

coherence function in order to determine the spontaneous 
oscillations that are a priory specified to the AAPP model. In 
order to obtain the formula for the coherence function we first 
divided each of the two analyzed time series (of length P) into 
overlapping sections; thus we obtained L sections, each of 
length T for each time series. Time series data from each 
section were Fourier-transformed, giving a frequency 
resolution df. No tapering or weighting function was used. The 
finite Fourier transform of the lth segment (l=1…L) from each 
time series at frequency λ was denoted by FT

x(λ, l) and defined 
as: 
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where: x(t) is replaced in our case by s1(t) – the first trial for 

each subject, each task and each EEG channel and 
respectively, by s2(t) – the second trial for the same subject, 
task and channel. 

Auto- and cross-spectra were, then, estimated by averaging 
over the overlapped sections: 
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where: the overbar ‘¯¯’ on FT
x(λ, l) indicates a complex 

conjugate and (x,y) are the pairs (s1, s2) for cross-spectra, and 
(s1, s2), respectively (s1, s2) for autospectra. Further, the 
coherence estimate for two signals was computed using the 
formula: 
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The coherence function indicates the degree of linear 
correlation in the frequency domain between two signals on a 
scale from zero (independence) to one (complete linear 
dependence). By taking the square root of (3) we obtained the 
complex valued function named coherency. Further we 
applied Fisher’s transform (Tanh-1) to the magnitude of the 
estimated coherency and obtained a new variable whose 
variance is given by the constant value: σ2= L21 ; here, L is 
the number of the sections used to estimate the coherence. 
Based on these we calculated a statistical test to assess that the 
individual coherence estimates for all the pairs (s1, s2) have a 
common mean. For the k coherency estimates, mi, we 
estimated the common mean as: 
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and designed the statistics, 
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which under the null hypothesis is distributed approximately 
as χ2 with (k-1) degrees of freedom. The computation of (5) 
was done separately at each frequency, λ, over de range 
[0,125] Hz. A confidence limit at the 95% level was set at the 
value χ2(α;k-1) and the null hypothesis was rejected if the (5) 
exceeded this limit. 

In order to facilitate the interpretation we calculated with 
(6) the pooled coherence estimate, a parameter whose values 

Fig. 2. The software user interface program used in coherence computation – the horizontal line is the confidence limit at the 95%  level 
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range from 0 up to 1. Assuming the independence between the 
k pairs of processes, the upper 95% confidence limit for the 
estimate of (6) is given by (7). 
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Values of the pooled estimate of coherence lying below this 
line can be taken as evidence that, an average, no coupling 
occurs between the two processes (x,y) at a particular 
frequency λ. We can also interpret (6) as representative of 
each coherence estimate between the k processes only if the 
null hypothesis (the k transformed coherency estimates have a 
common mean) is accepted. 

C. Adaptive Amplitude and Phase Process Model 
After determining the spontaneous EEG frequencies, an 

adaptive amplitude and phase model was implemented in 
order to model the original EEG data sets. 

In a first implementation, the EEG signal was modeled 
using adaptive nonlinear Markov process amplitude 
(ANMPA). This model is an implementation of the nonlinear 
Markov process amplitude model (NMPA) proposed in [25] 
for nonlinear coupling interaction of spontaneous EEG. The 
model parameters were determined adaptively with the least 
mean square (LMS) algorithm. A version of this algorithm for 
a first-order Markov process amplitude model is presented in 
[26]. 
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For our classification task, the EEG model was assumed to 
suitably decompose the frequency components of the EEG 
signal into some spontaneous oscillations (a priory specified) 
and the nonlinearly coupled frequencies (self-coupling 
oscillations and, respectively, cross-coupling oscillations). 
More exactly, two oscillatory waves (of f1 and f2 frequency) 
passing through a nonlinear square system generates two kinds 

of harmonic frequencies: self-coupling harmonics (2·f1 and 2· 
f2) and, respectively, cross-coupling harmonics (f1 ± f2). 

Having this information we wrote the NMPA model as in 
(8). Here, y[n] is the estimated EEG signal assumed to be 
composed of K different oscillations (xj, j=1÷K), TS is the 
sampling rate, fj is the dominant jth frequency, φj is the initial 
phase (which was set to zero, being unused), εs

j is the self-
coupling coefficient of the jth model oscillation, εc1

ij and εc2
ij 

are the cross-coupling coefficients of the coupled frequency – 
fi - fj and fi + fj, respectively, n is the time index and aj[n] is the 
model amplitude of the first order Markov process. 

The next estimate of the model amplitude aj[n+1] was 
given by (9): 
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where: ξj[n] is the independent increment of Gaussian 
distribution with zero mean and unity variance, μj is the 
coefficient of the random process and γj is the coefficient of 
the first-order Markov process. 

The least mean square (LMS) algorithm was used in order 
to adaptively estimate the model parameters (aj, γj, μj, εs

j, εc1ij, 
εc2

ij, i,j=1÷K, i≠j). The error squared, e[n]2 = [s[n]-y[n]]2 
(where s[n] was the modeled EEG signal), was used as an 
estimate of the mean square error cost function J, defined as J 
= 1/2⋅E{e[n]2}.  

After a large number of tests and analyses we concluded 
that the ANMPA model had several major disadvantages. The 
most important of them was generated by its poor convergence 
characteristics. In order to obtain the best solution, a large 
number of ANMPA runnings had to be carried on. This fact 
was considered a big disadvantage of the ANMPA model, its 
using for a BCI system making the real time operating 
characteristics of this last one to be unpredictable. 
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From these reasons and in order to improve the behavior of 
the ANMPA model, the estimated EEG signal, y[n], was more 
directly computed, by using (10); also, the phases of each used 
oscillation, self-coupling harmonics and cross-coupling 
harmonics were adaptively find out.  

The spectral components aj[n], αi[n], βij[n] and θij[n] have 
the same form with the one presented in (8). 
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Fig. 3. The user interface for the AAPPM software 

 

On the other hand, the unknown amplitudes and phases 
were found by minimizing the power of the error e[n] – the 
cost function, J, as it was presented above. 

Applying the LMS equations (11) and using (8), (10) we 
obtained the following adjusting formulas for the AAPPM 
amplitude model parameters (see relations (12) or (13), (14), 
(15) and (16)): 
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The quantity ηaj, ηbj, ηcij and ηdij are positive scalars that 

control the convergence rate and ensure the stability of the 
model. Regarding the phase variables, the applied Windrow’s 
LMS relations were similar with the ones presented above, 
being given by (17): 
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and finally: 
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Based on the relations presented above one can notice that 
when the number of interfering sinusoids is small the 
computational complexity of the model is very low. In order to 

update an estimated parameter, no more than 4 multiplications 
and 3 additions are needed for each sampling interval. The 
higher demand on computational complexity is given by the 
computation of sinus and cosines functions. But this problem 
can be easily solved using a look-up table. 

To end with the new proposed EEG model, the most 
important advantage of the AAPPM is given by its superior 
convergence characteristics. Actually, the model is able to 
converge to the optimal solution in no more than 30 sampling 
intervals (see Fig. 3). Both software applications, presented in 
Fig. 2 and Fig. 3, were developed in LabWindows CVI 
environment. 

 
 
 
 

 
 
 
 
 
 
 

Fig. 4. The classification process 

D. Artificial Neural Networks (ANNs) 
The calculated AAPPM coefficients represent the 

components of the ANN input feature-vectors. The nucleus of 
classification is based on a simple feedforward neural network 
of multilayer perceptron type (MLP), with only one hidden 
layer and trained with backpropagation algorithm [29]. The 
classifier uses the feature-vectors as shown in Fig. 4. 

In this paper we preferred to use the MLP ANN instead of 
any other superior classifiers (like support vector machines 
etc.) only because we wished to test the new introduced 
concept and its performances in comparison with the other 
implemented feature extraction techniques and not the power 
of the classification systems. 
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In this paper all the neuronal structures were implemented 
and tested in NeuroSolutions environment. 

III. RESULTS 

In the present study we focused only on one single subject, 
namely, subject 2 which was reported in the literature as 
having the greatest performances in comparison with the other 
3 subjects. 

To obtain the values of the coherence function, calculated 
for two different records acquired from the same scalp 
electrode, in the same recording conditions and for the same 
task, we used the sliding window method. The length of the 
windows was 512 samples overlapped by 95% (this means a 
sliding window of roughly 25 samples or, equivalent, 100 ms). 
In this way we intimately followed the course of the cortical 
activity transitions, considered to happen within time intervals 
of hundred of milliseconds. 

The selection of the fundamental frequencies used a priori 
in the EEG AAPPM model was done as follows. For each 
recording channel (C1, C2, P1, P2, O1, O2) five different 
frequencies were taken into account, each of them 
representing the frequency with the greatest coherence value 
obtained for the respective channel and for each of the five 
mental tasks. Here, we have to stress that all the selected 
frequencies were from the gamma band. This comes to 
emphasize the importance of the high frequencies band that 
until recently was considered not carrying any useful 
information. Nowadays there are researches that sustain this 
new innovative idea [21], [27]. 

The final feature vectors employed at the input of the ANN 
classifier were achieved by concatenating the parameters of 
the AAPPM model obtained for EEG sliding windows of 256 
samples length recorded simultaneously from the all six EEG 
channels. For a sliding window of 12 samples and for a length 
of 2250 samples for the 20 Hz high pass FIR filtered EEG 
signals, we finally got 1670 ANN input feature vectors (167 
vectors/each recording * 2 recordings * 5 mental tasks). From 
this input database we used 80% data for the training set (1336 
vectors) and 20% data for cross validation (CV) set (334 
vectors). The necessity of pre-filtering the signals was given 
by the fact that the most part of the EEG signal energy 
(frequency peaks) is usually situated in the 0 – 20 Hz band, 
thus making us difficult to obtain a reliable AAPPM model for 
the EEG signal. Additionally, in order that the proposed 
AAPPM model to not introduce frequencies within 0 – 20 Hz 
band or over the half of the sampling frequency (namely, 125 
Hz), we revised the initial soft for the model and forced all the 
learning rates and the initial amplitude values to became zero 
but only for those derived frequencies within the already 
mentioned values intervals. Thus, by removing the frequency 
components of zero value the feature vectors were reduced 
from the 180 components to only 104 components. 

Regarding the architecture of the MLP network, we chose 
an one hidden layer ANN, with 104 inputs, 40 processing 
elements on the hidden layer and 4 and 5 outputs 
corresponding to the cases with 4 and, respectively 5 mental 
tasks classification. The desired data set were constructed as it 
was shown in Fig. 4. MLP networks with 2 hidden layers were 

also analyzed but there was no any improvement in the 
obtained performances. 

The results achieved for the two analyzed cases (4 tasks 
and, respectively, 5 tasks classification problem) are given in 
Tabel 1 and, correspondingly in Table 2. In both tables the 
tasks are represented as follows: T1 – baseline, T2 – count, T3 
– letter, T4 – math and T5 – rotate. 

TABLE I 
THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE 

  Assigned classes 
  T2 T3 T4 T5 

T2 79.6% 3.2% 6.3% 10.9% 
T3 2.9% 84.1% 5.7% 7.3% 
T4 6.1% 13.6% 77.3% 3% 

Real 
classes 

T5 14.7% 10.3% 2.9% 72.1% 
        

 
 
 
 
 
 
 
 
 

TABLE II 
THE CONFUSION MATRIX FOR THE 5 TASKS CLASSIFICATION CASE 

  Assigned classes 
  T1 T2 T3 T4 T5 

T1 65% 15% 5% 8.3% 6.7% 
T2 11.9% 64.2% 3.1% 8.9% 11.9% 
T3 7.6% 3.9% 78.5% 6.3% 3.7% 
T4 8.3% 8.3% 10% 70% 3.4% 

Real 
classes 

T5 7.3% 7.3% 11.8% 1.5% 72.1% 

 
 
 
 
 
 
 
 
 
 
The learning characteristics on training and cross-validation 

(CV) sets are presented in the associated figures, Fig. 5 and 
Fig. 6. As one can see, the error values on the both data sets 
(training, CV) are smoothly decaying during the learning 
process, one closely following the other, without oscillating. 
This proves that the ANN was capable to learn the feature 
space characteristics. The correct classification rates obtained 
for the case of 4 tasks classification problem were, in average, 
78.275%,  all of them being greater then 72%. For the case of 
5 tasks classification the average correct classification rate 
was around 70%, each individual classification rate being 
greater then 64%. These are quite very good results if we take 
into consideration the results reported in the literature, on the 

Fig. 5. The error values on the training and the cross-validation sets 

Fig. 6. The error values on the training and the cross-validation sets 



same EEG database. Thus, in [28] the average percentage of 
test segments correctly classified ranged from 71% for one 
subject (our subject) to 38% for another subject, and for the 5 
tasks classification case. One can say that this is very similar 
with our result but actually this is not the case. The 71% 
correct classification performance was artificially improved 
within a post-processing stage when averaging across 20 
consecutive segments was performed, the real value being in 
fact 54%. Regarding the most part of the papers dedicated to 
the mental tasks classification, these are focused only on pairs 
of mental tasks, in which case the performances take values 
between 70% and over 90% correct classification rates. But, 
these performances are decreasing with the increasing number 
of the analyzed mental tasks. Moreover, it was proved [27] 
that it is equally important to choose suitable pairs of mental 
tasks for each individual as compared to the feature extraction 
method in order to get a successful BCI design. Thus it was 
pointed the fact that even for the same subject, for different 
pairs of mental tasks one can get not very good classification 
results due to the subject’s cognitive particularities.  

IV. CONCLUSION 

The main application for this research was the improvement 
of brain computer interface (BCI) systems by providing a new 
method for EEG feature extraction. Since we could compare 
our results with the results obtained on the same subject and 
for the same tasks and because we used the same type of 
classifier (MLP) as the others have done, we can conclude that 
the better results achieved by us are justified by one or by both 
of the two possible sources: 1) the new implemented EEG 
feature extraction technique (the EEG coherence based AAPP 
model) and 2) to the use of the spectral information embedded 
within the high gamma frequency band. 
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